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ABSTRACT

It is standard practice to use spectrograms as input fea-
tures for discriminative MIR tasks. However, recent re-
search showed using representations produced by Juke-
box (a music language model) led to better model perfor-
mance. This was tested on music tagging, genre classifica-
tion, key detection, emotion recognition, and music tran-
scription. In this paper, we test it on beat and downbeat
tracking. Specifically, we compare compressed Jukebox
embeddings with spectrograms as input to a model that
jointly predicts beat, downbeat, and tempo. Experiments
show that the two inputs bring comparable results for beat
tracking, while using Jukebox embeddings leads to signif-
icant improvements for downbeat tracking.

1. INTRODUCTION

Beat tracking and downbeat tracking are two tasks in the
field of Music Information Retrieval (MIR) that can be un-
dertaken independently or jointly. These tasks aim to de-
velop systems that automatically detect the timing of beats
and downbeats (the first beat of each measure) in music
signals. The typical approach is to train a neural network
that converts audio features into beat and downbeat acti-
vations. These activations are then fed into a probabilistic
graphical model to make beat and downbeat predictions.

Earlier models designed for downbeat tracking em-
ployed a variety of input features, including spectral flux,
chroma, CQT (Constant-Q Transform), and low-frequency
spectrogram [1, 2]. These features were thoughtfully se-
lected; for instance, chroma was chosen because chord
changes often occur at downbeats. However, as model
learning capabilities advanced and multi-task learning was
incorporated, spectrograms have become the standard in-
put [3–8]. This shift can be attributed to the models’ ability
to learn meaningful transformations during training, mak-
ing hand-crafted features unnecessary. As an explicit ex-
ample, trainable harmonic filters can be applied to convert
spectrograms into tailored harmonic representations [8]. In
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parallel, the model architecture has evolved from recur-
rent neural networks (RNN) and convolutional neural net-
works (CNN) [1–3], to temporal convolutional networks
(TCN) [4–6], and finally to Transformer [7, 8].

Recent research brought new possibilities for music au-
dio representations. Dhariwal et al. introduced Juke-
box, a music language model trained on 1.2 million songs
[9]. They compressed raw audio into discrete codes via
VQ-VAE and trained Transformers on these codes for
autoregressive generation. Following this, Castellon et
al. demonstrated embeddings produced by Jukebox were
strong representations for downstream MIR tasks [10]. It
was tested on music tagging, genre classification, key de-
tection, and emotion recognition, utilizing time-averaged
Jukebox embeddings for these non-temporal tasks. Subse-
quently, Donahue et al. developed Sheet Sage, a system
for transcribing audio into lead sheets, employing Jukebox
embeddings for melody and chord transcription [11]. In
this paper, we further investigate this idea by using Juke-
box embeddings for beat and downbeat tracking 1 .

2. EXPERIMENTS

2.1 Data

We used Ballroom [12, 13], Hainsworth [14], HJDB [15],
and SMC [16] for training using 8-fold cross validation,
with GTZAN [17, 18] served as our test dataset. Note that
models were trained on a combined dataset containing 7 of
the 8 splits from each training dataset.

We followed Sheet Sage [11] to choose layer 53 for em-
bedding extraction. This decision was based on the fact
that beat and downbeat tracking as a temporal task aligns
more closely with music transcription than non-temporal
tasks such as music tagging, for which layer 36 was proved
to be a better choice [10].

To compute Jukebox embeddings, the audio was seg-
mented into 20-second chunks. This was necessary be-
cause the Jukebox model we used can handle a maximum
audio length of approximately 23.8 seconds. These audio
segments were converted into Jukebox embeddings with a
sampling rate of approximately 345 Hz and an embedding
size of 4800, using an open-source implementation 2 . Sub-
sequently, these embeddings were resampled to 100 Hz,
and the embedding size was reduced from 4800 to 10 via
1D average pooling, aiming to provide appropriate input
data for our model. Taking a 20-second audio chunk for

1 code available at https://github.com/tiianhk/jukebeat
2 https://github.com/rodrigo-castellon/jukemirlib



Beat Downbeat
F1 CMLt AMLt F1 CMLt AMLt

Ballroom
S .956 .929 .957 .907 .903 .957
Sa .961 .942 .960 .914 .911 .960
J .956 .932 .960 .961 .951 .966
Ja .961 .944 .961 .963 .958 .971

Hainsworth
S .874 .793 .925 .661 .619 .815
Sa .888 .819 .936 .685 .650 .836
J .885 .817 .926 .772 .720 .883
Ja .903 .856 .942 .794 .760 .891

HJDB
S .972 .971 .987 .949 .957 .972
Sa .979 .977 .988 .955 .960 .972
J .985 .984 .992 .964 .973 .980
Ja .988 .986 .990 .974 .980 .986

SMC
S .545 .439 .629
Sa .544 .452 .641
J .551 .435 .627
Ja .568 .470 .651

GTZAN
S .860 .756 .923 .590 .547 .794
Sa .862 .767 .919 .623 .577 .802
J .863 .763 .922 .736 .671 .880
Ja .878 .795 .926 .749 .689 .881
[7] .885 .800 .922 .714 .665 .844
[8] .887 .812 .920 .756 .715 .881

Table 1. Results of beat and downbeat tracking using 8-
fold cross validation. GTZAN is an unseen dataset for test
only. Input data types are denoted as follows: ‘S’ for spec-
trogram and ‘J’ for Jukebox embedding. The subscript ‘a’
signifies the use of data augmentation.

example, its Jukebox embedding shape was (2000, 4800)
after resampling and (2000, 10) after dimension reduc-
tion. The resulting embeddings were concatenated along
the time axis. Thus, for a 30-second audio clip, the Juke-
box embedding shape was (3000, 10). Additionally, to im-
plement the data augmentation technique proposed in [6],
Jukebox embedddings were further resampled to 95, 97.5,
102.5, and 105 Hz to generate more training data.

2.2 Model

We experimented with two different inputs: the spectro-
gram and the Jukebox embedding. The spectrogram was
produced by firstly computing the STFT with a window
and FFT size of 2048 samples, and a hop size of 441 sam-
ples. With an audio sampling rate of 44.1 kHz, this re-
sulted in 100 frames per second for the STFT. The STFT
was then filtered using the FilteredSpectrogramProcessor
in madmom [19] with default parameters. Lastly, the mag-
nitudes were converted into the logarithmic scale. As men-
tioned, the Jukebox embedding was resampled to 100 Hz.
Thus, the two inputs were time-aligned.

We used the lightweight multi-task model proposed in

Figure 1. F1 scores of downbeat tracking on GTZAN sub-
genres. Models are trained using spectrogram (left) and
Jukebox embedding (right) with data augmentation.

[6] and adapted its open-source implementation available
in [20]. The model architecture comprised CNN layers for
feature extraction, succeeded by TCN layers for tempo-
ral modeling. The model was designed to simultaneously
predict beat, downbeat, and tempo. For the spectrogram
input, the CNN layers compressed the frequency dimen-
sion from 81 to 1 while expanding the channel dimension
from 1 to 20. The output of the CNN was then fed into the
TCN. In comparison, the Jukebox embedding was directly
fed into the TCN, as we believed it required no additional
feature extraction. More details about data augmentation,
model architecture, and training process could be found
in [5, 6, 20]. After training, we used DBNBeatTracking-
Processor and DBNDownBeatTrackingProcessor, two dy-
namic Bayesian networks from madmom [19], to infer beat
and downbeat from corresponding frame-level activations.

2.3 Results

We report beat and downbeat tracking results for two
inputs (the spectrogram and the Jukebox embedding)
in Table 1. For GTZAN we additionally include two
Transformer-based models [7, 8] for comparison, as they
both use GTZAN as test-only data. As shown, the beat
tracking results are comparable for both inputs. However,
by using the Jukebox embedding, the downbeat tracking
results are significantly improved over the spectrogram:
F1 score improved by about 5% on Ballroom and over
10% on Hainsworth and GTZAN. Notably, our best down-
beat F1 score on GTZAN is close to the state-of-the-art
result with a difference smaller than 1%. In Figure 1, we
further present downbeat tracking results across GTZAN
sub-genres. We observe that using the Jukebox embedding
doubles the F1 score for reggae, but gives only a limited
boost for classical.

3. DISCUSSION

The model we used is lightweight, but the Jukebox model’s
inference is computationally intensive. For future research,
one avenue is to optimize the inference time by focusing
only on generating the compressed embedding, rather than
the full embedding. Another option is to explore the use
of uncompressed Jukebox embeddings with larger models
like Transformer, aiming for maximum accuracy.
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